Spark-Streaming原理
文章目录
- SparkStreaming原理
- 整体流程
- 数据抽象
- DStream相关操作
- Transformations
- Output/Action
- 总结
SparkStreaming原理
整体流程
-
Spark Streaming中,会有一个接收器组件Receiver,作为一个长期运行的task跑在一个Executor上。Receiver接收外部的数据流形成input DStream
-
DStream会被按照时间间隔划分成一批一批的RDD,当批处理间隔缩短到秒级时,便可以用于处理实时数据流。时间间隔的大小可以由参数指定,一般设在500毫秒到几秒之间。
-
对DStream进行操作就是对RDD进行操作,计算处理的结果可以传给外部系统。
Spark Streaming的工作流程像下面的图所示一样,接收到实时数据后,给数据分批次,然后传给Spark Engine(引擎)处理最后生成该批次的结果。
数据抽象
Spark Streaming的基础抽象是DStream(Discretized Stream,离散化数据流,连续不断的数据流),代表持续性的数据流和经过各种Spark算子操作后的结果数据流
可以从以下多个角度深入理解DStream
- 1.DStream本质上就是一系列时间上连续的RDD
- 2.对DStream的数据的进行操作也是按照RDD为单位来进行的
- 3.容错性
底层RDD之间存在依赖关系,DStream直接也有依赖关系,RDD具有容错性,那么DStream也具有容错性
如图:每一个椭圆形表示一个RDD
椭圆形中的每个圆形代表一个RDD中的一个Partition分区
每一列的多个RDD表示一个DStream(图中有三列所以有三个DStream)
每一行最后一个RDD则表示每一个Batch Size所产生的中间结果RDD
-
4.准实时性/近实时性
Spark Streaming将流式计算分解成多个Spark Job,对于每一时间段数据的处理都会经过Spark DAG图分解以及Spark的任务集的调度过程。
对于目前版本的Spark Streaming而言,其最小的Batch Size的选取在0.5~5秒钟之间
所以Spark Streaming能够满足流式准实时计算场景,对实时性要求非常高的如高频实时交易场景则不太适合 -
总结
简单来说DStream就是对RDD的封装,你对DStream进行操作,就是对RDD进行操作
对于DataFrame/DataSet/DStream来说本质上都可以理解成RDD
DStream相关操作
DStream上的操作与RDD的类似,分为以下两种:
Transformations(转换)
Output Operations(输出)/Action
Transformations
常见Transformation—无状态转换:每个批次的处理不依赖于之前批次的数据
Transformation | Meaning |
---|---|
map(func) | 对DStream中的各个元素进行func函数操作,然后返回一个新的DStream |
flatMap(func) | 与map方法类似,只不过各个输入项可以被输出为零个或多个输出项 |
filter(func) | 过滤出所有函数func返回值为true的DStream元素并返回一个新的DStream |
union(otherStream) | 将源DStream和输入参数为otherDStream的元素合并,并返回一个新的DStream. |
reduceByKey(func, [numTasks]) | 利用func函数对源DStream中的key进行聚合操作,然后返回新的(K,V)对构成的DStream |
join(otherStream, [numTasks]) | 输入为(K,V)、(K,W)类型的DStream,返回一个新的(K,(V,W)类型的DStream |
transform(func) | 通过RDD-to-RDD函数作用于DStream中的各个RDD,可以是任意的RDD操作,从而返回一个新的RDD |
- 特殊的Transformations—有状态转换:当前批次的处理需要使用之前批次的数据或者中间结果。
有状态转换包括基于追踪状态变化的转换(updateStateByKey)和滑动窗口的转换
1.UpdateStateByKey(func)
2.Window Operations 窗口操作
Output/Action
Output Operations可以将DStream的数据输出到外部的数据库或文件系统
当某个Output Operations被调用时,spark streaming程序才会开始真正的计算过程(与RDD的Action类似)
Output Operation | Meaning |
---|---|
print() | 打印到控制台 |
saveAsTextFiles(prefix, [suffix]) | 保存流的内容为文本文件,文件名为"prefix-TIME_IN_MS[.suffix]". |
saveAsObjectFiles(prefix,[suffix]) | 保存流的内容为SequenceFile,文件名为 “prefix-TIME_IN_MS[.suffix]”. |
saveAsHadoopFiles(prefix,[suffix]) | 保存流的内容为hadoop文件,文件名为"prefix-TIME_IN_MS[.suffix]". |
foreachRDD(func) | 对Dstream里面的每个RDD执行func |
总结
Spark-Streaming原理
文章目录
- SparkStreaming原理
- 整体流程
- 数据抽象
- DStream相关操作
- Transformations
- Output/Action
- 总结
SparkStreaming原理
整体流程
-
Spark Streaming中,会有一个接收器组件Receiver,作为一个长期运行的task跑在一个Executor上。Receiver接收外部的数据流形成input DStream
-
DStream会被按照时间间隔划分成一批一批的RDD,当批处理间隔缩短到秒级时,便可以用于处理实时数据流。时间间隔的大小可以由参数指定,一般设在500毫秒到几秒之间。
-
对DStream进行操作就是对RDD进行操作,计算处理的结果可以传给外部系统。
Spark Streaming的工作流程像下面的图所示一样,接收到实时数据后,给数据分批次,然后传给Spark Engine(引擎)处理最后生成该批次的结果。
数据抽象
Spark Streaming的基础抽象是DStream(Discretized Stream,离散化数据流,连续不断的数据流),代表持续性的数据流和经过各种Spark算子操作后的结果数据流
可以从以下多个角度深入理解DStream
- 1.DStream本质上就是一系列时间上连续的RDD
- 2.对DStream的数据的进行操作也是按照RDD为单位来进行的
- 3.容错性
底层RDD之间存在依赖关系,DStream直接也有依赖关系,RDD具有容错性,那么DStream也具有容错性
如图:每一个椭圆形表示一个RDD
椭圆形中的每个圆形代表一个RDD中的一个Partition分区
每一列的多个RDD表示一个DStream(图中有三列所以有三个DStream)
每一行最后一个RDD则表示每一个Batch Size所产生的中间结果RDD
-
4.准实时性/近实时性
Spark Streaming将流式计算分解成多个Spark Job,对于每一时间段数据的处理都会经过Spark DAG图分解以及Spark的任务集的调度过程。
对于目前版本的Spark Streaming而言,其最小的Batch Size的选取在0.5~5秒钟之间
所以Spark Streaming能够满足流式准实时计算场景,对实时性要求非常高的如高频实时交易场景则不太适合 -
总结
简单来说DStream就是对RDD的封装,你对DStream进行操作,就是对RDD进行操作
对于DataFrame/DataSet/DStream来说本质上都可以理解成RDD
DStream相关操作
DStream上的操作与RDD的类似,分为以下两种:
Transformations(转换)
Output Operations(输出)/Action
Transformations
常见Transformation—无状态转换:每个批次的处理不依赖于之前批次的数据
Transformation | Meaning |
---|---|
map(func) | 对DStream中的各个元素进行func函数操作,然后返回一个新的DStream |
flatMap(func) | 与map方法类似,只不过各个输入项可以被输出为零个或多个输出项 |
filter(func) | 过滤出所有函数func返回值为true的DStream元素并返回一个新的DStream |
union(otherStream) | 将源DStream和输入参数为otherDStream的元素合并,并返回一个新的DStream. |
reduceByKey(func, [numTasks]) | 利用func函数对源DStream中的key进行聚合操作,然后返回新的(K,V)对构成的DStream |
join(otherStream, [numTasks]) | 输入为(K,V)、(K,W)类型的DStream,返回一个新的(K,(V,W)类型的DStream |
transform(func) | 通过RDD-to-RDD函数作用于DStream中的各个RDD,可以是任意的RDD操作,从而返回一个新的RDD |
- 特殊的Transformations—有状态转换:当前批次的处理需要使用之前批次的数据或者中间结果。
有状态转换包括基于追踪状态变化的转换(updateStateByKey)和滑动窗口的转换
1.UpdateStateByKey(func)
2.Window Operations 窗口操作
Output/Action
Output Operations可以将DStream的数据输出到外部的数据库或文件系统
当某个Output Operations被调用时,spark streaming程序才会开始真正的计算过程(与RDD的Action类似)
Output Operation | Meaning |
---|---|
print() | 打印到控制台 |
saveAsTextFiles(prefix, [suffix]) | 保存流的内容为文本文件,文件名为"prefix-TIME_IN_MS[.suffix]". |
saveAsObjectFiles(prefix,[suffix]) | 保存流的内容为SequenceFile,文件名为 “prefix-TIME_IN_MS[.suffix]”. |
saveAsHadoopFiles(prefix,[suffix]) | 保存流的内容为hadoop文件,文件名为"prefix-TIME_IN_MS[.suffix]". |
foreachRDD(func) | 对Dstream里面的每个RDD执行func |
发布评论